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NOTATION 

a Panel chord or beam length 

Modal amplitude for transverse displacement - ai- 
- 
% 

JL Dimensionless modal amplitude, - % h 
A Amplitude parameter 

bo,TR,Ek Modal amplitudes for in-plane displacement 
- 

Amplitude parameter 

Plate modulus, 

Beam shear modulus 

Eh3 
12 (1- v2 ) 

Modulus of elasticity 

Generalized force associated with kth in-plane mode 

Generalized force associated with kth transverse mode 

Panel thickness 

Beam area moment of inertia about neutral axis 

Running spring constant, panel in-plane restraint spring 

Free-stream Mach number 

Number of assumed modes f o r  transverse displacement 

Pressure 

Free - stream pres sure 
Static pressure difference across panel; positive if 
cavity pressure exceeds free-stream pressure 

4 
Dimensionless static pressure difference, - n;;a 

n Dh 
P v '  Free-stream dynamic pressure, - 2 - iost Shear-force amplitude: Q(x,t) = Q(x)e 

- 2  Applied in-plane load 

Dimensionless applied in-plane load, - D 
Time 

Rxa 
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T 
- 
U 

U 

T i  

N 

W 

W 

X 

z 

a 

Y 
A 

c1 

V 

P 

'm 
7 

cu 

( '1  

Kinetic energy 

In-plane displacement 

Free-stream speed 

Transverse displacement 

Amplitude of transverse displacement : icot T( x, t ) = G( x)e 
Potential energy 

In-plane (axial) coordinate 

Transverse coordinate 

In-plane restraint parameter, 

Gas constant for free stream 

Dimensionless dynamic-pressure parameter, - 

Ka 
[Eh+Ka(l-v2) 1 

zqa3 
MD 

Pa Dimensionless mass ratio, - 
Pmh 

Poisson's ratio 

Free-stream mass density 

Panel or beam 

Dimensionless 

Frequency 

Derivative of 

Derivative of 

mass density 
time, t ( 7 )  D "  

1 

Pmha 

dimensional quantity with respect to t 

dimensionless quantity with respect to T 
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I. INTRODUCTION 

This report  presents a summary of t he  second year ' s  research 

a c t i v i t y  under NASA Grant NGR O5-02O-lO2, monitored technical ly  by 

the  Nonsteady Phenomena Branch of Ames Research Center. 

of t h i s  research program i s  t o  study i n  a systematic manner the  e f f e c t s  

on panel response and s t a b i l i t y  of nonlinear (nonviscous) aerodynamic 

loading a t  hypersonic Mach numbers. 

determine whether or not nonlinear aerodynamic e f f e c t s  w i l l  provide 

a theo re t i ca l  explanation f o r  experimentally observed nonlinear 

behavior, a s  discussed below i n  Section 111. 

The purpose 

It i s  of pa r t i cu la r  i n t e r e s t  t o  

The equations of motion f o r  a panel (plate-colmn) on hinged 

supports, with both aerodynamic and panel geometric nonl inear i t ies ,  

a r e  derived and discussed i n  d e t a i l .  Representative solutions f o r  

. various cases a re  then presented, including an unanticipated diversion 

in to  the  problem of in te rpre t ing  r e s u l t s  f o r  zero system damping. 

Additional sections dea l  b r i e f l y  with the  work performed on a clamped 

panel and on methods of analysis,  and a f i n a l  sect ion discusses topics  

, of research t o  be considered during the  next year.  
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11. PANEX ON HINGED SUPPORTS 

2.1 Equations of Motion 

Consider the two-dimensional panel, or plate-column, illustrated 
in Fig. 1. The supports are hinged, and the in-plane motion at one end 
is resisted by a distributed spring whose running spring constant is 
Free-stream parameters shown are the Mach number M and the dimension- 
less dynamic-pressure parameter A. 

in-plane load , a static pressure difference Ap, and an unsteady 
pressure difference p-pm. The unsteady pressure is approximated in 
hypersonic flow by the second-order piston-theory expression 

K. 

The panel is loaded by an applied 
_. 

X 

Here 7(x, t ) is the middle-surface transverse displacement of the 
panel, and q is the free-stream dynamic pressure. Since the pressure 
acts normal to the instantaneous panel surface, there arise in a rigor- 

ous sense both transverse and in-plane aerodynamic loads when the panel 
deflection is finite. Order-of-magnitude consistency then dictates 

including both a transverse aerodynamic load p - p, + & and an in- 
plane aerodynamic load [ (p - pm)L + Ap I%, where the 'subscript L 
denotes the linear part of the unsteady pressure expression in Eq. 
(2.1). 

The panel transverse displacement is represented as a series of 
assumed modes satisfying the geometric boundary conditions of zero 
slope and curvature a.t each end: 

N 

k=l  

A consistent assumed-mode expression for the in-plane displacement is 
given by 

2N 
k7CX E(x,t) = [FR -t i;,(t)]$ + c -  bk(t) si- 

k=l 
- 

Here % is the initial panel in-plane displacement at x = a due to 
the application of the in-plane load E , and - 

bo(t) is the in-plane X 



displacement at  x = a resu l t ing  from the  subsequent unsteady panel 

motion. 

terms w i l l  be discussed below. 

The reasons f o r  dividing t h e  displacement i n t o  these two 

Following the procedure outlined i n  R e f .  1, w e  now wish t o  derive 

from Hamilton's pr inc ip le  the  Euler-Lagrange equations of motion, the  

unknowns being the generalized coordinates %( t ), bR, bo( t ), bk( t ) - 
3 N  + 2 i n  a l l .  The po ten t i a l  energy of the system i s  given by 

- - - 

1 -2 - [iTX(FR + KO) - KbO1 (2.4) 

This expression represents  physically the  s t r a i n  energy of the  panel 

l e s s  t he  po ten t i a l  of any conservative ex terna l  loads. I n  this  case 

the  applied in-plane load 'ix 
r e s t r a i n t  a t  x = a both possess poten t ia l s .  The po ten t i a l  due t o  

Rx i s  pos i t ive  because a posi t ive produces a pos i t ive  in-plane 

end displacement, as defined herein; thus 

amount of work on the  panel. Conversely, the  po ten t i a l  due t o  the  

r e s t r a i n t  spring i s  negative because the  incremental load due t o  the  

spring always a c t s  i n  opposition t o  the  in-plane end displacement. It 

has been assumed i n  the  formulation above t h a t  the spring i s  not 

attached u n t i l  a f t e r  the load 'ix 
allowing in-plane loading t o  be present in t he  system even when K = 03. 

Thus ER represents t he  end displacement resu l t ing  when Ex i s  

applied, and bo represents the  subsequent in-plane end displacement. 

It has a l so  been assumed t h a t  the panel i s  i n i t i a l l y  res t ra ined from 

buckling i f  supe rc r i t i ca l  compressive in-plane loading i s  applied. 

and t h e  load resu l t ing  from the spring 

- 
X 

Ex always does a posi t ive 

i s  applied; t h i s  is  a mechanism f o r  

- 

The k ine t i c  energy i s  given simply by 

Here the k ine t i c  energy associated with both in-plane motion and ro ta ry  

i n e r t i a  has been neglected. 

f ixed, one would expect by far  the  grea te r  p a r t  of the k ine t i c  energy 

t o  be associated with transverse motion. 

Since one end of the panel i s  always firmly 

In  addition, Mindlin (Ref. 2 )  
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has demonstrated t h a t  the e f f e c t s  of ro ta ry  i n e r t i a  on f l exura l  

motions of a p l a t e  are unimportant unless the  wavelength of the  

f l exura l  mode i s  comparable i n  magnitude t o  the  thickness of the 

p la te .  

panel a re  generally much l a rge r  than the  panel thickness, so rotary- 

i n e r t i a  e f f e c t s  are safely ignored here.  

Wavelengths associated with the  c r i t i c a l  f l u t t e r  modes of a 

Finally,  the generalized forces  are calculated.  The generalized 

force associated with transverse panel displacement i s  given by 

k.XX 
Fa 

0 (FZ)k =J [-  ( p -  p,) + GI si- dx, k = 1,2 ,? ,N 

The unsteady pressure difference i s  obtained from Eq. (2.1).  The s t a t i c  

pressure difference i s  a l so  included; it i s  pos i t ive  when the  pres- 

sure i n  the  undisturbed cavi ty  below the panel exceeds the free-stream 

s t a t i c  pressure p,. 

of conservative ex terna l  loads i s  a l s o  applied here. 

pressure difference 

motion of the panel i n  the  pos i t ive  direct ion,  so  a minus sign i s  r e -  

quired where t h i s  difference appears. Unsteady cavi ty  e f f e c t s  are  not 

included; i n  the  experiments of i n t e r e s t  the panels were mounted so a s  

t o  eliminate these e f f e c t s  a s  much as possible.  

The s ign convention used f o r  wri t ing the  po ten t i a l  

That is ,  a posi t ive 

p-p, on the exposed surface of the  panel opposes 

Eqs. (2.6) become then 

a 
+1)M 1 &? + 

(Fz)k = - 2jn[ E a t  + ax + 'yt ( E a t  ax 
0 

+ ra& s i n T  b X  dx, k = 1,2,.,.,N 

"0 . 

The generalized force associated with in-plane panel displacement i s  

then found from the  l i n e a r  port ion of Eq. (2.1), multiplied by -J- 

and weighted with t h e  proper assumed mode: 

87 
X 
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The assumed-mode s e r i e s  f o r  E and F a re  then inser ted i n  the 

expressions for  po ten t i a l  energy, k ine t i c  energy, and generalized 

forces.  

R e f .  1) then beccme, after considerable manipulation, 

The Euler-Lagrange d i f f e r e n t i a l  equations (see Eqs.  (7.39) of 

(2.9) 

(continued next page) 
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In these equations multiple summations are indicated by a single 
summation sign, with upper and lower limits of all summation indices 
given. 
not eqal, in particular in the summations involving products of the 
% with the Tk. 
divided by zero, the terms are to be taken as zero. 

Exceptions to this convention occur when the upper limits are 

- 
When the indices are such that the terms give zero 

Eq. (2.9) is seen to give the relationship between the axial 
elongation or  contraction of a plate-column under axial load, with the 
constraint that no transverse displacement be permitted. Eq. ( 2.10) 
is therefore simplified and rearranged to give 
transverse-displacement modal amplitudes: 

- 
bo in terms of the 

n N 
x LEh 1 n2Z2 - 

bo = - 
4a[Eh+Ka( l-v2) ] n=l 

(2.13) 

- 
In similax fashion, Eqs. (2.11) can be rearranged to give the 
terms of the %. Substituting in Eqs. (2.12) for To and the Fk 
and rewriting in nondimensional variables produces finally a single set 
of N quasi-linear, second-order, ordinary differential equations for 
the N modal amplitudes g ( ~ ) :  

bk in 

(see next page) 
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With the  exception of a s l i g h t  difference i n  the  def in i t ion  of 

the terms up t o  and including the  first appearance of Ap 
same as those derived by D o w e l l  ( R e f .  3). 

system parameters f o r  t h i s  set of equations are A, i, a ( 1 - v  ), 
and Rx. 

t he  appearance of a ( 1 - v  ), so t h a t  only one value of a ( 1 - v  ) need be 

considered. With the  addition of t he  nonlinear aerodynamic terms, the  

s i t ua t ion  becomes more complicated. A new parameter, - a' appears 

expl ic i t ly ,  and p and M must be specif ied separately.  Also, 

the  exp l i c i t  dependence on the parameter a ( l - v  ) 
eliminated. The nonlinear aerodynamic terms appear i n  the following 

order: first, those a r i s ing  from the terms i n  

a, 
are the 

As  was pointed out i n  R e f .  3, t h e  
2 

Ap, 
Furthermore, the  equations can be recast so as t o  eliminate 

2 2 

h 

2 can no longer be 

(Fz)k dependent on 

, and (x) , respectively; secondly, those a r i s ing  

Note a l s o  t h a t  the terms due t o  the nonlinear pa r t  of 

G ai3 3 7 2  ax - a; g I and AP ax' from the  t e r m s  i n  (Fx)k dependent on 

respectively.  
(Fz)k depend l i n e a r l y  on - h and are quadratic i n  the %, while 

those due t o  (F ) depend quadrat ical ly  on a and a re  cubic i n  the  h a 

x k  

Eqs .  (2.14) a re  integrated numerically with respect t o  the  dimen- 

s ionless  time T from given i n i t i a l  conditions. The calculations a re  

performed on an IBM 360/67 computer. A subroutine based on the Kutta- 

Merson procedure i s  used, and the  s tep  s ize  i s  varied i n  order t o  keep 

the  r e l a t i v e  e r r o r  within given bounds. Provision i s  a l so  made f o r  

including or excluding i n  the  computation any of the  nonlinear aero- 

dynamic terms, as desired.  

"k* . 

2.2 Comparison with Previous Results 

I n  order t o  check the numerical integrat ion,  a f e w  t es t  cases 

were run with l i n e a r  aerodynamic loading, and the  r e s u l t s  were com- 

pared with those from Ref. 3. Figs. 2 and 3 show the  dimensionless 

panel displacement a t  the  three-quarter chord vs. dimensionless time 

f o r  values of system parameters noted on the  f igures .  Fig. 2 corre- 

sponds d i r e c t l y  t o  Fig. 2 of R e f .  3, and the  l imit-cycle amplitude 

taken from Fig. 3 checks tha t  given i n  Fig. 5 of R e f .  3. A l l  the  

other t e s t  cases showed similar good agreement. 

9 



2.3 Behavior with Zero System Damping 

Some in t e re s t ing  and unanticipated problems were encountered 

when the equations with l i n e a r  aerodynamic loading were solved f o r  zero 
system damping. Figs.  4 and 5 show the panel response f o r  the same s e t  

of i n i t i a l  conditions and system parameters used f o r  Figs. 2 and 3, 

except t h a t  IJ. = 0. 

response becomes per iodic  but not simple harmonic, as i s  evidenced i n  

Fig. 5. The response curve i l l u s t r a t e d  i n  Fig. 5 continues indef in i te ly  

without change, and the  peak amplitude i s  d i f f e ren t  from tha t  shown i n  

Fig. 3. That the system does demonstrate i n s t a b i l i t y  f o r  t h i s  s e t  of 

parameters i s  i l l u s t r a t e d  i n  Fig.  6. 
the three-quarter chord is  smaller than that  i n  Figs. 2-5 by a f ac to r  

of approximately four,  and the  amplitude c l ea r ly  grows with time. It 
then decreases, and the same process i s  repeated again (but i s  not 

shown here) .  

the d i f f e ren t  i n i t i a l  conditions. This does not mean, however, t h a t  a 

unique l imit-cycle amplitude and frequency are  not associated with a 

given s e t  of ( supe rc r i t i ca l )  system parametem. 

response i s  shown f o r  N = 2 and f o r  supe rc r i t i ca l  system parameters. 

The i n i t i a l  conditions i n  t h i s  case were obtained from a harmonic- 

balance solut ion.  It i s  seen t h a t  there  i s  no i n i t i a l  t rans ien t ,  and 

the panel response continues at  the same amplitude. 

other values of system parameters exhibi t  the same behavior, and it can 

therefore  be concluded t h a t  the method of calculat ing the panel motion 

with time w i l l  produce a l i m i t  cycle of constant amplitude f o r  zero 

system damping only i f  the  initial conditions correspond exactly t o  the  

l imit-cycle  modal amplitudes. For any other i n i t i a l  conditions, the  

panel o s c i l l a t e s  between s t ab le  and unstable s t a t e s .  

hand, the system parameters a re  subcr i t ica l ,  t he  panel w i l l  o s c i l l a t e  

without decaying, and the peak amplitude i s  determined by the i n i t i a l  

conditions. Figs. 8 and 9 show the panel displacemnt  at  the  three- 

quarter  chord f o r  a s u b c r i t i c a l  value of 

d i t ions .  

t he  i n i t i a l  amplitudes, although the motion i s  not simple harmonic. 

After an i n i t i a l  t r ans i en t  shown i n  Fig. 4, the  

Here the  i n i t i a l  displacement at  

Note a l s o  t h a t  the m a x i m u m  amplitudes a re  d i f f e ren t  f o r  

I n  Fig.  7, the  panel 

Solutions f o r  

If ,  on the  other 

h and d i f fe ren t  i n i t i a l  con- 

Here it w i l l  be observed t h a t  the  peak amplitudes never exceed 

10 



These r e s u l t s  can a l so  be interpreted with the a id  of some general  

s t a b i l i t y  considerations f o r  autonomous systems (Ref. 4 ) .  
equations f o r  zero system damping describe a system whose state i s  

uniquely determined by the  2N modal amplitudes and ve loc i t ies  akJ ik, 
k = 1,2,-,NJ or i n  other  words by a point i n  the  2N-dimensional space 

2n 
Ea . 
corresponds t o  the  panel i n  a f l a t ,  undisturbed s t a t e  - and it i s  

desired t o  examine the  s t a b i l i t y  of the  panel i n  t h e  neighborhood of 

t h i s  s t a t e .  S(R) 
of radius  R i n  Ea , centered on the  origin,  there  e x i s t s  another 

sphere S ( r )  of radius  r 6 R such t h a t  any motion or iginat ing i n  

S ( r )  remains i n  S(R) ever after.  This stable behavior i s  exhibited 

i n  Figs. 8 and 9. 
resu l tan t  amplitude, so f o r  any given bound on the  amplitude the i n i t i a l  

amplitude can be reduced t o  keep the  resu l tan t  motion within the  bound. 

On the  other hand, i f  such a sphere S ( r )  cannot be found, the  or ig in  

i s  unstable. 

It i s  evident t h a t  there  i s  an amplitude t h a t  the resu l tan t  motion w i l l  

exceed, no matter how small (but f i n i t e )  the  i n i t i a l  amplitude i s .  

These same conclusions can be drawn when the i n i t i a l  conditions a re  

broadened t o  include nonzero i n i t i a l  ve loc i t ies ,  and the reader i s  

re fer red  t o  R e f .  4 f o r  the f u l l ,  precise  def in i t ions  of s t a b i l i t y  and 

i n s t a b i l i t y .  

The panel 

The or ig in  of t h i s  space i s  c l ea r ly  an equilibrium point - it 

I n  b r i e f ,  the  o r ig in  i s  s tab le  i f  f o r  - any sphere 
2n 

Reducing the  i n i t i a l  amplitude reduces the m a x i m u m  

Figs. 4, 5 ,  and 6 i l l u s t r a t e  t h i s  unstable s i tua t ion .  

11 



2.4 Effects  of Aerodynamic Nonlinearit ies 

A s  has been pointed out many times i n  the past ,  the  geometric 

panel nonl inear i ty  i s  a s t ab i l i z ing  fac tor ,  i n  t h a t  the increase of 

in-plane tension with tranverse displacement serves t o  l i m i t  the  super- 

c r i t i c a l  response amplitudes. On the  other hand, aerodynamic nonlin- 

e a r i t i e s  a r e  i n  general  destabi l iz ing,  i n  the sense t h a t  they a c t  t o  

increase supe rc r i t i ca l  response amplitudes and i n  extreme cases can 

even lead t o  panel i n s t a b i l i t i e s  f o r  values of system parameters t h a t  

would be s u b c r i t i c a l  on the  bas i s  of a theory with l i n e a r  aerodynamic 

r e l a t ions .  

the e f f e c t s  of aerodynamic nonl inear i t ies .  Ref. 5 presents r e s u l t s  

f o r  a panel (plate-column) on hinged supports with var iable  in-plane 

r e s t r a i n t .  

loads, and the  flow i s  taken over both s ides  of the  panel, so t h a t  

the  only aerodynamic nonlinem term i s  the cubic one. 

s t r a t ed  with a two-mode harmonic-balance solut ion t h a t  f o r  ce r t a in  

values of in-plane r e s t r a i n t  (intermediate between no r e s t r a i n t  a t  
a l l  and i n f i n t e  r e s t r a i n t )  an i n s t a b i l i t y  could occur below the l i n e a r  

s t a b i l i t y  boundasy i f  the i n i t i a l  amplitude were la rge  enough. 

the  parameter values used i n  these calculat ions give f o r  an aluminum 

panel at  sea l e v e l  a thickness-to-chord r a t i o  of 0.0131 and a 
Mach number of 28.4. 

two-sided flow, give a r a the r  un rea l i s t i c  s i tua t ion .  On the  other 

hand, Ref. 6 gives r e s u l t s  f o r  much more reasonable physical constants - 
a s t e e l  p l a t e  at  sea leve l ,  with a length-to-width r a t i o  of three,  a 
thickness-to-chord r a t i o  of 400, and c r i t i c a l  Mach numbers from two 

t o  four .  

used f o r  the aerodynamic loads. The calculations,  though, show t h a t  

the region of s t a b i l i t y  i s  increased as the i n i t i a l  disturbance in-  

creases, so t h a t  the c r i t i c a l  speed goes from 952 meters per second 

f o r  the  l i n e a r  theory t o  1600 meters per second f o r  a,(O) = - a2(0) 

= 1.0.  The t ransverse displacement i s  approximated with two chordwise 

modes and one spanwise mode, and the supports a re  hinged. Solutions 

a re  found by d i r e c t  in tegra t ion  over time of the equations f o r  the modal 

amplitudes. I n  both Ref. 5 and Ref. 6 the panel geometric nonlinearity 

i s  taken i n t o  account with the  KZcrmk approximation. 

Refs. 5 and 6 are typ ica l  examples of other s tudies  of 

Third-order p i s ton  theory i s  used f o r  the aerodynamic 

It was demon- 

However, 

a 
These values, coupled with the assumption of 

1 

One-sided flow i s  assumed, and second-order p i s ton  theory i s  

12 



I n  t h i s  invest igat ion the  effects of aerodynamic nonl inear i t ies  

pro- z k  were first introduced by considering only the  term from 

por t iona l  t o  

Figs.  10 and 11 i l l u s t r a t e  the  e f f e c t  of t h i s  t e r m .  The value of A 
chosen i s  s u b c r i t i c a l  from the  viewpoint of l i n e a r  theory, and a i s  

set equal t o  zero, so t h a t  the  s t ab i l i z ing  e f f e c t  of the  panel geo- 

metric nonl inear i ty  i s  not present.  I n  Fig. 10, the  panel i s  observed 

t o  be stable f o r  a,(O) = - a,(O) = 1.71, while i n  Fig. 11 a divergent 

i n s t a b i l i t y  occurs f o r  a,(O) = - a2(0) = 1.72.  Aside from s t a b i l i t y  

considerations, another important e f f e c t  observed with t h i s  quadratic 

nonl inear i ty  i s  i t s  impact on t r ans i en t  panel motion. Figs. 12 and 

13 i l l u s t r a t e  t he  marked difference i n  panel response caused by the  

introduction of t h i s  nonlinear t e r m ;  i n  both cases the panel i s  s table ,  

but with the  aerodynamic nonl inear i ty  i n  the equations the response 

peaks a re  higher, and the shape of the  curve i n  spots d i f f e r s  grea t ly  

from t h a t  obtained with l i nea r  aerodynamic terms. 

(F ) (E)*. A s ingle  new system parameter, - Mh i s  required. a ’  

13 



111. PANEL ON CLAMPED SWPORTS 

I n  Ref. 7 a r e  described some high-Mach-number pane l - f lu t te r  

experiments, where in-plane tension was used t o  s t ab i l i ze  a clamped 

panel i n  a wind tunnel  u n t i l  s tab le  flow conditions were establ ished.  

Then the  tension was reduced u n t i l  the  panel f l u t t e r e d .  A s  soon as 

the onset of f l u t t e r  was perceived, the tension was increased again 

u n t i l  the  f l u t t e r  stopped. 

was grea te r  than the tension required t o  s t a b i l i z e  the panel i n i t i a l l y .  

I n  an attempt t o  duplicate t h i s  "hysteresis" phenomenon theore t ica l ly ,  

the equations of motion f o r  a clamped panel, with both aerodynamic and 

geometric nonl inear i t ies ,  have been derived i n  a manner s imilar  t o  

t h a t  described i n  Section 11. The in-plane applied load E i s  an 

a r b i t r a r y  function of time. Temperature e f f e c t s  a re  a l so  taken i n t o  

account by including a temperature-difference term with both temporal 

and s p a t i a l  var ia t ion,  and a d is t r ibu ted  mass i s  placed a t  one end t o  

account for any i n e r t i a l  e f f e c t s  from the tensioning mechanism. 

The tension at which the  f l u t t e r  stopped 

X 

Inasmuch as numerical r e s u l t s  a re  not ye t  available,  a de ta i led  

discussion of t h i s  problem w i l l  be deferred u n t i l  there  a re  some 

spec i f ic  data  on which t o  comment. 

14 



I V .  METHODS OF SOLUTION 

I n  accordance with the research proposal, a spec i f ic  p i l o t  problem 

has been invest igated t h a t  demonstrates an inherent weakness of the 

Galerkin procedure when it i s  applied t o  the solut ion of d i f f e r e n t i a l  

equations i n  a purely mathematical sense. Consider the clamped Timo- 

shenko beam (Ref. 8) i l l u s t r a t e d  i n  Fig. 14. 
lateral vibrations,  without ro ta ry- iner t ia  e f fec ts ,  can be wr i t ten  as 

The equation f o r  harmonic 

The l a t e r a l  def lect ion has been wr i t ten  as 

i c u t  F ( x , t )  = G(x)e 

Let 

(4.3) 

so t h a t  a l l  boundary conditions ( i n  t h i s  case a l l  geometric i n  nature) 

a r e  sa t i s f i ed .  The Galerkin in t eg ra l  f o r  determining the existence of 

the amplitude parameter A i s  found by subs t i tu t ing  Eq. (4.3) i n to  

Eq. (4.1), weighting the r e su l t an t  equation w i t h  t he  assumed mode i n  

Eq. (4.3), and integrat ing over the  length of the beam: 

A l a [  - E I ( $ ) 4 ~ ~ ~  -g- 25x + q E 1  pmu 2 (a) 2s COS - a x  
a 

0 

2 - p u3 (1-cos - m a 

If A exis t s ,  the  eigenvalue i s  

4 4 2 161t EI/3pma 

2 L u =  
1 + 4f12EI/3DQa 

(4.4) 

(4.5) 

Now, i f  the same problem i s  approached v i a  the  potential-energy 

method, the t o t a l  po ten t i a l  of the  system includes the energy of bending, 

the energy of shearing, and the k ine t i c  energy of vibrat ion.  Thus, 

15 



W - T =  

The d i r e c t  method 

(4.6) 

of t he  calculus of var ia t ions (the Rayleigh-Ritz 

method) requires  that assumed modes satisfying the  geometric boundary 

conditions be selected when the funct ional  t o  be minimized i s  the  t o t a l  

po ten t i a l  energy, so the  assumed modes are taken as 

2.x x 
a G ( x )  = A(1-cos -) 

2.x x 
a C(x) = B s i n  - 

(4.7) 

(4-8)  

The shear-force amplitude 

amplitude, since the  shear-angle amplitude i s  simply -, and a d i r ec t  

proportion exists.  

6 i s  used here instead of t,e shear-angle 
Q 
Q D 

Enforcement of t he  condition 6(W-T) = 0 with respect t o  both 

A and B y i e lds  two simultaneous equations f o r  ensuring the  existence 

of A and B. The resu l t ing  charac te r i s t ic  equation gives the  eigen- 

value 

1h 4 E I / ~ ~ ~ ~ ~  
2 c u =  

1 + 4.x2EI/D a2 Q 
(4.9) 

Note t h a t  t h i s  r e su l t ,  which represents a minimum-energy solution, i s  

d i f f e ren t  from the  Galerkin solution, Eq. (4.5), which represents  only 

an approximate solut ion t o  a d i f f e r e n t i a l  equation. The reason f o r  t h i s  

discrepancy is  t h a t  t he  Timoshenko-beam equation, Eq. (4.3), i s  not an 

E u l e r  equation. Actually, var ia t ion  of Eq. (4.6) with respect t o  both 

w and Q produces two Euler equations. Eliminating 5 i n  these 

equations leads t o  a s ingle  governing equation i n  G, Eq. (4.1). 
In te res t ing ly  enough, i n  the  case of simple supports, no difference 

e x i s t s  between the  two methods of solution; however, f o r  clamped 
supports, a Galerkin solut ion producing the  same r e s u l t s  as the  mini- 

mum-energy solut ion can only be obtained if the  two Euler equations 

governing the  problem are u t i l i zed .  I n  the present problem, the  d is -  

crepancy i s  serious,  since the  Galerkin solut ion underestimates the 

e f fec t  of transverse shear. This problem i s  more serious i n  the case of 

h h 

- 
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sandwich beams, where the  transverse shear i s  extremely important. It 

i s  a l so  in te res t ing  t o  note that a similar problem, w i t h  similar con- 

clusions, was considered independently by Yu and L a i  ( R e f .  9). 
The foregoing p i l o t  problem indicates  t h a t  continuing results on 

more complicated problems may lead t o  reevaluation of the  methods and 

r e s u l t s  associated with nonconservative nonlinear problems on panels 

having curvature and boundary r e s t r a i n t s  other than simple supports. 



V* CONCLUDING FiEMAlXS 

Further research a c t i v i t y  w i l l  be concentrated i n  the following 

(1) 

areas : 

Work begun with the panel on hinged supports w i l l  be contin- 

ued i n  an e f f o r t  t o  assess systematically the e f f ec t s  of aerodynamic 

nonl inear i t ies  on panel response and s t a b i l i t y .  

( 2 )  Numerical r e s u l t s  f o r  the clamped panel w i l l  be obtained f o r  

a varying in-plane load and temperature difference corresponding as 

closely as possible t o  the environment of the panels used i n  the exper- 

iments of Ref. 7. Additional s tudies  on the order of those discussed 

above f o r  the panel on hinged supports w i l l  a l so  be performed. 

(3) The methods developed f o r  analyzing the infinite-span panel 

w i l l  be extended t o  take in to  account f ini te-span ef fec ts ,  and the 

influence of such addi t ional  system parameters as aspect r a t io ,  span- 

wise curvature, and finite-edge boundary conditions w i l l  be determined. 

(4) Experience with the r e s u l t s  from the method of analysis de- 

scribed herein has shown tha t  they a re  very useful  f o r  studying i n  

d e t a i l  the panel motion fo r  a par t icu lar  case but often inef f ic ien t  i n  

providing information for ,  say, a parameter survey. New and potent ia l ly  

valuable approaches based on examining the energy of the system (Ref. 10, 

f o r  example) show promise i n  a l lev ia t ing  t h i s  problem. 

w i l l  therefore be devoted t o  examining i n  d e t a i l  the energy interchange 

between panel and airstream as a means of t e s t ing  these new ideas. 

Further e f f o r t  

( 5 )  One important aerodynamic nonlinear e f fec t ,  that of the 

unsteady boundary layer at the panel surface, has heretofore been 

neglected i n  t h i s  research program. 

account the e f f ec t s  of a boundary layer  on an osc i l l a t ing  surface have 

been developed f o r  infinite-span panels of both i n f i n i t e  and f i n i t e  

chord (Ref. ll, f o r  example). 

methods of analysis f o r  the two-dimensional and the three-dimensional 

problem w i l l  be sought. 

Approximate means of taking in to  

This work w i l l  be reviewed, and improved 
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